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Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Algorithm with predictions example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 2 / 20



Introduction Distributional predictions Multiple advice Numerical observations

Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η
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Contract algorithms & contract scheduling

Contract algorithms
▶ Inputs include allowed processing time
▶ Performance improves if more time is allotted

Contract scheduling
▶ contract algorithm ⇒ anytime algorithm

(anytime = can get interrupted “any time” and outputs a solution)

interruption

1s 3s 6s

Example: interruption at 8s, largest contract executed = 3s
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Acceleration ratio
Schedule definition
▶ sequence X = {xi }i∈Z, xi = ith execution length
▶ start at −∞ so that no interruption happens before 1st execution
▶ performance of X if interruption at T : ℓ(X, T)

(length of the last contract terminated by X at time T)

Quality of a schedule
▶ acceleration ratio:

acc(X ) = sup
T

T
ℓ(X , T )

e.g., acc(X ) = 5 ⇒ ∀T , a contract has run for ≥ T/5

T

≥ T/5

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 5 / 20
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Classic (no prediction) problem

Best contract algorithms: X (λ) with xi = 2i+λ for any λ ∈ [0, 1]

Example with λ = 0:

interruption

0 0.5 1 2 4 8

Proposition (from [Russel Zimberstein 91, Alpern Gal 03])
The acceleration ratio of X (λ) is 4. All other algorithms are worse.
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Previous work on single predictions [AK’23]
Framework
▶ prediction p = interruption time

Approach
▶ fix target robustness r , restrict to geometrical solutions.

Candidate schedules are {ai+λ}i∈Z with a ∈
[

1
2 (r ±

√
r2 − 4r)

]
▶ best solution: largest a, shift λ to “aim” at p
▶ issue: not smooth

explore prediction with bounded error

prediction

01
5

1 5
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Outline

1 Introduction

2 Distributional predictions

3 Multiple advice

4 Numerical observations
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Distributional predictions
Framework
▶ prediction µ = prob. distr. of the interruption time
▶ to simplify: aim at best consistency while staying 4-robust

only choice: λ ∈ [0, 1] in {2i+λ}i∈Z

Consistency definition

c(X , µ) = ET∼µ[T ]
ET∼µ[ℓ(X , T )]

0

µ

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 9 / 20
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Can we do something without any assumption on µ ?

First idea
▶ take two opposite shifted schedules {2i+λ}i∈Z : (λ ∈ {0, 1

2 }),
select “the best”

▶ ⇒ 8(
√

2 − 1) - consistent

interruptioninterruption

00.51 2 4 8
λ = 0

√
2 2

√
2 4

√
2 8

√
2

λ = 1
2

Best of n regularly shifted schedules
▶ ⇒ 4n(2−1/n − 1) - consistent
▶ −→n→∞ 4 ln 2
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Distributional lower bound
Summary
▶ the previous solutions are tight

Theorem
For any D and µD having a density fD(x) = 2D

x2 on [D; 2D], no 4-robust
schedule has a consistency better than 4 ln 2.

00.51 2 4 8
λ = 0

λ = 1
2

1

µ2

1

µ4
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“Smoothness”

Recall on single predictions
▶ best algorithm: ε error on prediction destroys everything

On distributed predictions
▶ intuitively: worst-case predictions needs balanced probability mass

small perturbation ⇒ small impact on performance
same worst-case for all 4-robust schedules

▶ formally: perturbation measured via Earth-Mover Distance
▶ technical result: if the actual distribution is close to µD (wrt EMD),

then the acceleration ratio of any 4-robust schedule is close to 4 ln 2

1

µ2

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 12 / 20
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Prediction = multiple advice

Framework
▶ prediction P = {τ1, . . . , τk}
▶ goal: optimize performance wrt adversarial interruption among P

Consistency definition
▶ c(X , P) = sup

τ∈P

τ

ℓ(X , τ)

τ1 τ2 τ3 τ4τ4

0 0.5 1 2 4 8
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Algorithm

τ1 τ2 τ3 τ4
0 0.5 1 2 4 8

0 20.2 21.2 22.2 23.2

τj = 2ij +λj , such that ij ∈ Z, λj ∈ [0, 1]

≈ τj = {2i+λj }i∈Z

ex : {λj} = {0.6, 0.5, 0.2, 0.6}

2i

2i+1

λ1 = 0.2

λ2 = 0.5

λ3 = 0.6

∆ = maxi(λ1+i mod k − λi)

Consistency of choosing λ “targeting” ∆: 22−∆ ≥ 22− 1
k (this is tight)

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 15 / 20
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Distributional predictions

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000
2

2.5

3

3.5

4

m

c
o
n
s
is
t
e
n
c
y

n=4
n=3
n=2
n=1

Setup
▶ Algo: choose best among n schedules {2i+k/n}i∈Z for k ∈ [1 . . . n]
▶ Prediction: truncated normal distribution mean m st. dev. 0.05m
▶ Plot consistency in function of m (bottom is best)

Remarks
▶ Larger n = minimum of more functions
▶ Steeper downward slope (worse to interrupt before a contract)
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Distributional predictions : “smoothness”

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900
2

2.5

3

3.5

4

actual mean

c
o
n
s
is
t
e
n
c
y

using predicted mean
using actual mean

Setup
▶ Algo: choose best among 16 schedules {2i+k/n}i∈Z for k ∈ [1 . . . 16]
▶ Prediction: - Top curve: truncated normal distribution mean 500, σ = 25

- Bottom curve: truncated normal distribution mean m, σ = 25
▶ Interruption: truncated normal distribution mean m, σ = 25
▶ Plot ratio m over the expected performance

Remarks
▶ Smooth asymetric degradation with the error (linked to σ)
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Multiple predictions

1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

k

co
n
si
st
en

cy

22−1/k

worst case
average

Setup
▶ Prediction P: k ∈ [1 . . . 10] candidate times drawn U(1, 1024)
▶ Plot: - theoretical consistency

- experimental consistency, averaged over 1000 repetitions
- experimental perf. if interruption drawn uniformly from P

Remarks
▶ Results with non-pathological predictions much better than

theoretical bounds
Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 19 / 20
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Conclusion

Framework
▶ objective: study models beyond simple prediction
▶ original idea: prediction as probability distribution

Results
▶ simple algorithms best consistency when robustness = 4
▶ hard to get more general results

Future direction
▶ focus on a simpler related problem to aim at more general results:

online bidding

Bertrand Simon – CNRS / CC-IN2P3 Contract Scheduling with Distributional and Multiple Advice 20 / 20
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