
Learning-Augmented Online Algorithms & Paging

Bertrand Simon – CNRS / CC-IN2P3

CoA Workshop, September 2023
Based on work with Antonios Antoniadis, Joan Boyar, Marek Eliáš,
Lene M. Favrholdt, Ruben Hoeksma, Kim S. Larsen, Adam Polak.

several slides inspired from J. Boyar

Bertrand Simon Learning-Augmented Online Algorithms & Paging 1 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]

Bertrand Simon Learning-Augmented Online Algorithms & Paging 2 / 25

Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact

Bertrand Simon Learning-Augmented Online Algorithms & Paging 3 / 25

Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact

Bertrand Simon Learning-Augmented Online Algorithms & Paging 3 / 25

Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact

Bertrand Simon Learning-Augmented Online Algorithms & Paging 3 / 25

Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact

Bertrand Simon Learning-Augmented Online Algorithms & Paging 3 / 25

“Classic” Beyond worst-case analysis
Future instance: X1 ; X2 ; X3 ; X4 ; X5 ; . . .

Lookahead
X1 = 5

Semi-online∑
i Xi = 30

Random arrival Advice
1101110

Stochastic input
Xi ∼ N (10, 5)

Robust analysis
X1 = 5 ± 2, X2 = 7 ± 3, . . .

. . .

/ Strong assumptions, needs some perfect information (oracle)

HERE: no assumption on the predictor
allows plug-and-play predictors

=⇒
arxiv.org/abs/1412.6572

Bertrand Simon Learning-Augmented Online Algorithms & Paging 4 / 25

Most common framework used

timeOnline algorithm A

Input Input Input Input Input

error
()

= η

Objective: “minimize” competitive ratio cA(η) (may need Opt to scale)

Consistency

cA(0)

Robustness

cA(∞)

Smoothness

“slope” of cA(η)

https://algorithms-with-predictions.github.io

Bertrand Simon Learning-Augmented Online Algorithms & Paging 5 / 25

https://algorithms-with-predictions.github.io

Most common framework used

timeOnline algorithm A

Input Input Input Input Input
error

()
= η

Objective: “minimize” competitive ratio cA(η) (may need Opt to scale)

Consistency

cA(0)

Robustness

cA(∞)

Smoothness

“slope” of cA(η)

https://algorithms-with-predictions.github.io

Bertrand Simon Learning-Augmented Online Algorithms & Paging 5 / 25

https://algorithms-with-predictions.github.io

Most common framework used

timeOnline algorithm A

Input Input Input Input Input
error

()
= η

Objective: “minimize” competitive ratio cA(η) (may need Opt to scale)

Consistency

cA(0)

Robustness

cA(∞)

Smoothness

“slope” of cA(η)

https://algorithms-with-predictions.github.io

Bertrand Simon Learning-Augmented Online Algorithms & Paging 5 / 25

https://algorithms-with-predictions.github.io

Most common framework used

timeOnline algorithm A

Input Input Input Input Input
error

()
= η

Objective: “minimize” competitive ratio cA(η) (may need Opt to scale)

Consistency

cA(0)

Robustness

cA(∞)

Smoothness

“slope” of cA(η)

https://algorithms-with-predictions.github.io
Bertrand Simon Learning-Augmented Online Algorithms & Paging 5 / 25

https://algorithms-with-predictions.github.io

Caching with predictions [LykourisVassilvitskii’18]

A
1

3
B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

misses: 1k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9
A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A

misses: 2k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8
C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
B

misses: 2k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-
D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
B

misses: 3k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-
E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
B
C

misses: 4k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10
F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
B
C
Dmisses: 5k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11
A
8

-

B
9

-

E
10

-

F
11

-

A
E
C
Dmisses: 6k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-
B
9

-

E
10

-

F
11

-

A
E
F
Dmisses: 6k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-
E
10

-

F
11

-

A
E
F
Dmisses: 7k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-
F
11

-

A
E
B
Dmisses: 7k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
E
B
Dmisses: 8k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
E
B
Fmisses: 8k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

A
1

3

B
2

9

A
3

8

C
4

-

D
5

-

E
6

10

F
7

11

A
8

-

B
9

-

E
10

-

F
11

-

A
E
B
Fmisses: 8k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

Caching with predictions [LykourisVassilvitskii’18]

next:
A
1

3
B
2

9
A
3

8
C
4

-
D
5

-
E
6

10
F
7

11
A
8

-
B
9

-
E
10

-
F
11

-
A
E
B
Fmisses: 8k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .

Bertrand Simon Learning-Augmented Online Algorithms & Paging 6 / 25

What if we “Follow The Predictions”?
FtP: evict the latest predicted page

▶ , If η = 0 → Opt ▶ , get (log k) by combination

▶ Is it a good candidate? What about ?

[L&V’18] : for k = 2, take the sequence

A BCBCBCBC A BCBCBCBC A . . .

Predict B, C correctly and A asap: η = total length ; Opt = #A

FtP’s competitive ratio is at least Ω(η/ Opt) for k = 2.
No trivial fix known.

/ We need better smoothness

Bertrand Simon Learning-Augmented Online Algorithms & Paging 7 / 25

Classic online solution: Marker

Divide input in phases: maximum subsequences of ≤ k distinct pages
Example for k = 3: A, B, D, A, | C , E , C , B, E , C , C , | A, B, E , | D , . . .

clean / new

Definition (marking algorithms)
Marked pages: previously requested in the current phase.
A Marking algorithm never evicts marked pages.

Marker algorithm: evict an unmarked page uniformly at random

Classic results: - Marker is 2Hk -competitive (O(log k))
- Opt ≥ #phases, Opt ≥ 1

2 #clean pages
- marking algorithms ∈ [2, k]-competitive

Bertrand Simon Learning-Augmented Online Algorithms & Paging 8 / 25

Classic online solution: Marker

Divide input in phases: maximum subsequences of ≤ k distinct pages
Example for k = 3: A, B, D, A, | C , E , C , B, E , C , C , | A, B, E , | D , . . .

clean / new

Definition (marking algorithms)
Marked pages: previously requested in the current phase.
A Marking algorithm never evicts marked pages.

Marker algorithm: evict an unmarked page uniformly at random

Classic results: - Marker is 2Hk -competitive (O(log k))
- Opt ≥ #phases, Opt ≥ 1

2 #clean pages
- marking algorithms ∈ [2, k]-competitive

Bertrand Simon Learning-Augmented Online Algorithms & Paging 8 / 25

Predictive Marker [LykourisVassilvitskii’18]
Main idea: use a marking framework to bring more structure

Version 1: Marker but evict the predicted unmarked page

/ is only k

Define eviction chains : build a graph between the pages:
▶ when a stale (not new) page q evicts a page p, add an

edge from p to q

Note: big η =⇒ long chains

A

C

E

G

B

D

Predictive Marker: revert to random unmarked eviction for chains > Hk .

Theorem

Predictive marker is 2 + O(min(log k ,
√

η/Opt))-competitive.

Key: ℓ-long chain means ℓ pages predicted in reverse order ⇒ η = Ω(ℓ2)

Bertrand Simon Learning-Augmented Online Algorithms & Paging 9 / 25

Improvements from [Rohatgi’20]

LMARKER: revert to random unmarked evictions for chains > 1

Theorem
LMARKER is O(1 + min(log k , log η

Opt))-competitive.

Key: the furthest predicted element is “close” to the end of the phase, so
an analysis similar to Marker with a shorter phase length works

– – – q
new, evicts p

· · · · · · · · · · · · · · · ·||
p predicted

p
next occurrence < ηp

Bertrand Simon Learning-Augmented Online Algorithms & Paging 10 / 25

Further improvement from [Rohatgi’20]

LNONMARKER: - use predictions only when new pages are requested
- evict a random page if chain length = 1
- otherwise evict a random unmarked page

Motivation (hand wavy) for good predictors :
- 2nd element of a chain is “close” to the end of the phase
- totally random eviction → only prob. < ηp/k to be wrong in this phase

– – – q
new, evicts p

· · · · · · · · · · · · · · · ·||
p predicted

p
next occurrence < ηp

Theorem
LNONMARKER combined is O(1 + min(log k , η

k·Opt log k))-competitive.

Theorem (Wei’20)
FTP combined is O(1 + min(log k , η

k·Opt))-competitive.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 11 / 25

Further improvement from [Rohatgi’20]

LNONMARKER: - use predictions only when new pages are requested
- evict a random page if chain length = 1
- otherwise evict a random unmarked page

Motivation (hand wavy) for good predictors :
- 2nd element of a chain is “close” to the end of the phase
- totally random eviction → only prob. < ηp/k to be wrong in this phase

– – – q
new, evicts p

· · · · · · · · · · · · · · · ·||
p predicted

p
next occurrence < ηp

Theorem
LNONMARKER combined is O(1 + min(log k , η

k·Opt log k))-competitive.

Theorem (Wei’20)
FTP combined is O(1 + min(log k , η

k·Opt))-competitive.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 11 / 25

Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries

Bertrand Simon Learning-Augmented Online Algorithms & Paging 12 / 25

Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries

Bertrand Simon Learning-Augmented Online Algorithms & Paging 12 / 25

Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries

Bertrand Simon Learning-Augmented Online Algorithms & Paging 12 / 25

Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries

Bertrand Simon Learning-Augmented Online Algorithms & Paging 12 / 25

Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries

Bertrand Simon Learning-Augmented Online Algorithms & Paging 12 / 25

Paging with succinct predictions [ABEFHLPS, ICML’23]

Question: Can we do this with succinct predictions?

Next request to a page is a lot of information.
▶ Is it too hard to obtain?
▶ Does it make it too easy to get a good competitive ratio, based on η.

Advice complexity says:

Theorem (Mikkelsen, 2016)
Even with correct advice, a linear number of bits are necessary to be
better than Hk -competitive

Bertrand Simon Learning-Augmented Online Algorithms & Paging 13 / 25

Paging with succinct predictions [ABEFHLPS, ICML’23]

Question: Can we do this with succinct predictions?

Next request to a page is a lot of information.
▶ Is it too hard to obtain?
▶ Does it make it too easy to get a good competitive ratio, based on η.

Advice complexity says:

Theorem (Mikkelsen, 2016)
Even with correct advice, a linear number of bits are necessary to be
better than Hk -competitive

Bertrand Simon Learning-Augmented Online Algorithms & Paging 13 / 25

Paging with succinct predictions [ABEFHLPS, ICML’23]

Question: Can we do this with succinct predictions?

Next request to a page is a lot of information.
▶ Is it too hard to obtain?
▶ Does it make it too easy to get a good competitive ratio, based on η.

Advice complexity says:

Theorem (Mikkelsen, 2016)
Even with correct advice, a linear number of bits are necessary to be
better than Hk -competitive

Bertrand Simon Learning-Augmented Online Algorithms & Paging 13 / 25

Succinct predictions

Predictions: 1 bit per request

Discard predictions — same as for advice complexity

bi =

 0 if Opt would have ri in cache next time it is requested
1 otherwise

Phase predictions — based on max. sequences with ≤ k distinct pages

bi =

 0 if ri is in the next phase
1 otherwise

Both cases: 0-predictions = should stay in cache.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 14 / 25

Discard predictions — deterministic

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

All predictions correct =⇒ OBVIOUS keeps same pages as Opt

Observation: OBVIOUS is 1-consistent

Bertrand Simon Learning-Augmented Online Algorithms & Paging 15 / 25

Discard predictions — deterministic algorithms

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

Suppose for ri , the prediction for p is 1, but the correct prediction is 0
Opt would keep it in cache.
When p is requested again, there is one fault.

Suppose for ri , the prediction is 0, but the correct prediction is 1
Problem: Cache may have no 1-predictions.
Could evict sequence in the opposite of the correct order (like LRU), so
Opt faults once and OBVIOUS faults k times.

Observation: False 0-predictions are much worse than false 1-predictions.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 16 / 25

Discard predictions — deterministic algorithms

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

Suppose for ri , the prediction for p is 1, but the correct prediction is 0
Opt would keep it in cache.
When p is requested again, there is one fault.

Suppose for ri , the prediction is 0, but the correct prediction is 1
Problem: Cache may have no 1-predictions.
Could evict sequence in the opposite of the correct order (like LRU), so
Opt faults once and OBVIOUS faults k times.

Observation: False 0-predictions are much worse than false 1-predictions.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 16 / 25

Discard predictions — deterministic algorithms

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

Suppose for ri , the prediction for p is 1, but the correct prediction is 0
Opt would keep it in cache.
When p is requested again, there is one fault.

Suppose for ri , the prediction is 0, but the correct prediction is 1
Problem: Cache may have no 1-predictions.
Could evict sequence in the opposite of the correct order (like LRU), so
Opt faults once and OBVIOUS faults k times.

Observation: False 0-predictions are much worse than false 1-predictions.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 16 / 25

Notation

η0: Number of incorrect 0-predictions.
η1: Number of incorrect 1-predictions.

A is (α, β, γ)-competitive if for any input seq. I, ∃b

ALG(I) ≤ α · Opt(I) + β · η0 + γ · η1 + b.

↖
constant

Bertrand Simon Learning-Augmented Online Algorithms & Paging 17 / 25

Notation

η0: Number of incorrect 0-predictions.
η1: Number of incorrect 1-predictions.

A is (α, β, γ)-competitive if for any input seq. I, ∃b

ALG(I) ≤ α · Opt(I) + β · η0 + γ · η1 + b.

↖
constant

Bertrand Simon Learning-Augmented Online Algorithms & Paging 17 / 25

Discard predictions — deterministic

Modify OBVIOUS — Flush-When-All-0s
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt will not have it in cache next time.)
▶ Otherwise, flush the cache.

Theorem
Flush-When-All-0s is (1, k − 1, 1)-competitive.

Corollary

Flush-When-All-0s is 1-consistent

Bertrand Simon Learning-Augmented Online Algorithms & Paging 18 / 25

Discard predictions — Flush-When-All-0s

Theorem
Flush-When-All-0s is (1, k − 1, 1)-competitive.

Between 2 flushes:
▶ Opt evicts ≥one 0-predicted page
▶ Flush-When-All-0s evicts k 0-predicted pages

So:
▶ On 0-pages: Flush-When-All-0s0 ≤ Opt0 +(k − 1)η0

▶ On 1-pages: Flush-When-All-0s1 ≤ Opt1 +η1

Flush-When-All-0s ≤ Opt +(k − 1)η0 + η1

Bertrand Simon Learning-Augmented Online Algorithms & Paging 19 / 25

Discard predictions — Flush-When-All-0s

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Between 2 flushes:
▶ Opt evicts ≥one 0-predicted page
▶ Flush-When-All-0s evicts k 0-predicted pages

So:
▶ On 0-pages: Flush-When-All-0s0 ≤ α Opt0 +(k − α)η0

▶ On 1-pages: Flush-When-All-0s1 ≤ Opt1 +η1

Flush-When-All-0s ≤ α Opt +(k − α)η0 + η1

Bertrand Simon Learning-Augmented Online Algorithms & Paging 20 / 25

Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all zeros: η0 ≤ Opt

n = Alg ≤ α ·
(n

k

)
+ β ·

(n
k

)
So: α + β ≥ k.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 21 / 25

Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all zeros: η0 ≤ Opt

n = Alg ≤ α ·
(n

k

)
+ β ·

(n
k

)
So: α + β ≥ k.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 21 / 25

Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all zeros: η0 ≤ Opt

n = Alg ≤ α ·
(n

k

)
+ β ·

(n
k

)
So: α + β ≥ k.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 21 / 25

Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all zeros: η0 ≤ Opt

n = Alg ≤ α ·
(n

k

)
+ β ·

(n
k

)
So: α + β ≥ k.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 21 / 25

Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all ones: η1 ≤ n − Opt

n = Alg ≤ α ·
(n

k

)
+ γ

(
n − n

k

)
So: α + (k − 1)γ ≥ k.

Bertrand Simon Learning-Augmented Online Algorithms & Paging 21 / 25

Discard predictions — Randomized

Algorithm Randomized Eagerly Evict:
Uses ideas from marking algorithms.

▶ runs in phases, marking requested pages
▶ evicts all pages with prediction 1 immediately
▶ among pages with prediction 0, randomly evicts unmarked pages

Theorem
Algorithm Randomized Eagerly Evict is (1, 2Hi , 1)-competitive.

Corollary

Algorithm Randomized Eagerly Evict is 1-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 22 / 25

Discard predictions — Randomized

Algorithm Randomized Eagerly Evict:
Uses ideas from marking algorithms.

▶ runs in phases, marking requested pages
▶ evicts all pages with prediction 1 immediately
▶ among pages with prediction 0, randomly evicts unmarked pages

Theorem
Algorithm Randomized Eagerly Evict is (1, 2Hi , 1)-competitive.

Corollary

Algorithm Randomized Eagerly Evict is 1-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 22 / 25

Discard predictions — Randomized

Algorithm Randomized Eagerly Evict:
Uses ideas from marking algorithms.

▶ runs in phases, marking requested pages
▶ evicts all pages with prediction 1 immediately
▶ among pages with prediction 0, randomly evicts unmarked pages

Theorem
Algorithm Randomized Eagerly Evict is (1, 2Hi , 1)-competitive.

Corollary

Algorithm Randomized Eagerly Evict is 1-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 22 / 25

Phase predictions — Randomized

Algorithm MARK & PREDICT:
Follows MARKER closely.
Major difference: It prefers to evict pages with prediction 1.

Algorithm MARK & PREDICT

For i = 1 to n
If ri is not in cache

If all pages in cache are marked { end phase }
unmark all pages

If there is an unmarked 1-page
evict a random unmarked 1-page

Else

evict a random unmarked

0-

page
bring ri into cache

mark ri

Bertrand Simon Learning-Augmented Online Algorithms & Paging 23 / 25

Phase predictions — Randomized

Algorithm MARK & PREDICT:
Follows MARKER closely.
Major difference: It prefers to evict pages with prediction 1.

Algorithm MARKER

For i = 1 to n
If ri is not in cache

If all pages in cache are marked { end phase }
unmark all pages

If there is an unmarked 1-page
evict a random unmarked 1-page

Else

evict a random unmarked

0-

page
bring ri into cache

mark ri

Bertrand Simon Learning-Augmented Online Algorithms & Paging 23 / 25

Phase predictions — Randomized

Algorithm MARK & PREDICT:
Follows MARKER closely.
Major difference: It prefers to evict pages with prediction 1.

Algorithm MARK & PREDICT

For i = 1 to n
If ri is not in cache

If all pages in cache are marked { end phase }
unmark all pages

If there is an unmarked 1-page
evict a random unmarked 1-page

Else
evict a random unmarked 0-page

bring ri into cache
mark ri

Bertrand Simon Learning-Augmented Online Algorithms & Paging 23 / 25

Phase predictions — Randomized

Theorem
Algorithm MARK & PREDICT is (2, Hk , 1)-competitive. (Also holds if
1-pages are evicted deterministically.)

Theorem
Algorithm MARK & PREDICT is
(2, Hk , 2 Opt

η1
(ln(2 η1

Opt + 1) + 1))-competitive.

Corollary

Algorithm MARK & PREDICT is 2-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 24 / 25

Phase predictions — Randomized

Theorem
Algorithm MARK & PREDICT is (2, Hk , 1)-competitive. (Also holds if
1-pages are evicted deterministically.)

Theorem
Algorithm MARK & PREDICT is
(2, Hk , 2 Opt

η1
(ln(2 η1

Opt + 1) + 1))-competitive.

Corollary

Algorithm MARK & PREDICT is 2-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 24 / 25

Phase predictions — Randomized

Theorem
Algorithm MARK & PREDICT is (2, Hk , 1)-competitive. (Also holds if
1-pages are evicted deterministically.)

Theorem
Algorithm MARK & PREDICT is
(2, Hk , 2 Opt

η1
(ln(2 η1

Opt + 1) + 1))-competitive.

Corollary

Algorithm MARK & PREDICT is 2-consistent

≈ corresponding lower bounds =⇒ results are quite tight

Bertrand Simon Learning-Augmented Online Algorithms & Paging 24 / 25

Conclusions

Learning-augmented algorithms

Paging with succinct predictions
▶ succinct predictions may be easier to obtain
▶ succinct predictions =⇒ similar guarantees

Future of Learning-Augmented algorithms
▶ “pick a new online problem and add predictions” done 100s of time
▶ new paradigms: multiple predictors, prediction scarcity, stochastic

predictions, practical benchmark, new objective functions. . .
▶ ad: topic of the newly funded ANR project PREDICTIONS

Bertrand Simon Learning-Augmented Online Algorithms & Paging 25 / 25

