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Motivating example: binary search

n elements

q = 16

8 11 14 16 18 25 30 36 40 43 46 49 50 53 54 56 59 60 63

Prediction: position h(q) Error: η = |h(q) − index(q)|

Classic: Θ(log n) Θ(log η)
predictions

Practical applications [KraskaBCDP ’18]
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Properties we seek

prediction error (η)

competitive ratio / complexity / . . .

Consistency

Robustness

OPT

Online

Smoothness

Algorithms are oblivious to η

Prediction h should be learnable, e.g., compact
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“Classic” Beyond worst-case analysis
Future instance: X1 ; X2 ; X3 ; X4 ; X5 ; . . .

Lookahead
X1 = 5

Semi-online∑
i Xi = 30

Random arrival Advice
1101110

Stochastic input
Xi ∼ N (10, 5)

Robust analysis
X1 = 5 ± 2, X2 = 7 ± 3, . . .

. . .

/ Strong assumptions, needs some perfect information (oracle)

HERE: no assumption on the predictor
allows plug-and-play predictors

=⇒
arxiv.org/abs/1412.6572
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Most common framework used

timeOnline algorithm A

Input Input Input Input Input

error
( )

= η

Objective: “minimize” competitive ratio cA(η) (may need Opt to scale)

Consistency

cA(0)

Robustness

cA(∞)

Smoothness

“slope” of cA(η)

https://algorithms-with-predictions.github.io
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Caching with predictions [LykourisVassilvitskii’18]
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misses: 1k = 4

pages ∈ {A, B, . . . , F}

Q: What to predict?

Lookahead (next q requests)

▶ / useless in the worst case

Strong Lookahead
(next requests until q distinct)

▶ / huge, hard to predict

Next arrival time of the current request
▶ , compact, enough to compute Opt, arguably learnable
▶ error ηi at round i : distance between predicted time and actual time

combined error η =
∑

ηi .
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What if we “Follow The Predictions”?
FtP: evict the latest predicted page

▶ , If η = 0 → Opt ▶ , get (log k) by combination

▶ Is it a good candidate? What about ?

[L&V’18] : for k = 2, take the sequence

A BCBCBCBC A BCBCBCBC A . . .

Predict B, C correctly and A asap: η = total length ; Opt = #A

FtP’s competitive ratio is at least Ω(η/ Opt) for k = 2.
No trivial fix known.

/ We need better smoothness
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Classic online solution: Marker

Divide input in phases: maximum subsequences of ≤ k distinct pages
Example for k = 3: A, B, D, A, | C , E , C , B, E , C , C , | A, B, E , | D , . . .

clean / new

Definition (marking algorithms)
Marked pages: previously requested in the current phase.
A Marking algorithm never evicts marked pages.

Marker algorithm: evict an unmarked page uniformly at random

Classic results: - Marker is 2Hk -competitive (O(log k))
- Opt ≥ #phases, Opt ≥ 1

2 #clean pages
- marking algorithms ∈ [2, k]-competitive
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Predictive Marker [LykourisVassilvitskii’18]
Main idea: use a marking framework to bring more structure

Version 1: Marker but evict the predicted unmarked page

/ is only k

Define eviction chains : build a graph between the pages:
▶ when a stale (not new) page q evicts a page p, add an

edge from p to q

Note: big η =⇒ long chains

A

C

E

G

B

D

Predictive Marker: revert to random unmarked eviction for chains > Hk .

Theorem

Predictive marker is 2 + O(min(log k ,
√

η/Opt))-competitive.

Key: ℓ-long chain means ℓ pages predicted in reverse order ⇒ η = Ω(ℓ2)
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Improvements from [Rohatgi’20]

LMARKER: revert to random unmarked evictions for chains > 1

Theorem
LMARKER is O(1 + min(log k , log η

Opt ))-competitive.

Key: the furthest predicted element is “close” to the end of the phase, so
an analysis similar to Marker with a shorter phase length works

– – – q
new, evicts p

· · · · · · · · · · · · · · · ·||
p predicted

p
next occurrence < ηp
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Further improvement from [Rohatgi’20]

LNONMARKER: - use predictions only when new pages are requested
- evict a random page if chain length = 1
- otherwise evict a random unmarked page

Motivation (hand wavy) for good predictors :
- 2nd element of a chain is “close” to the end of the phase
- totally random eviction → only prob. < ηp/k to be wrong in this phase

– – – q
new, evicts p

· · · · · · · · · · · · · · · ·||
p predicted

p
next occurrence < ηp

Theorem
LNONMARKER combined is O(1 + min(log k , η

k·Opt log k))-competitive.

Theorem (Wei’20)
FTP combined is O(1 + min(log k , η

k·Opt ))-competitive.
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Paging with predictions – Overview

Predictions = time of next occurrence of current page
▶ Lykouris,Vassilvitskii, 2018 (2021 JACM)
▶ Rohatgi, SODA 2020
▶ Wei, APPROX/RANDOM 2020

Predictions = all pages before next occurrence of current page
▶ Jiang Panigrahi Su, ICALP 2020

Predictions = state of Opt (which pages in cache)
▶ Antoniadis Coester Elias Polak Simon, (ICML 2020)

Multiple predictors — time of next occurrence of current page
▶ Emek Kutten Shi, (ITCS 2020)

Prediction queries — obtain next occurrence of any page in cache
▶ Im Kumar Petety Purohit, (ICML 2022)

CR = O(min{logb+1n + E [η]/ Opt, log k}), b = number of queries
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Paging with succinct predictions [ABEFHLPS, ICML’23]

Question: Can we do this with succinct predictions?

Next request to a page is a lot of information.
▶ Is it too hard to obtain?
▶ Does it make it too easy to get a good competitive ratio, based on η.

Advice complexity says:

Theorem (Mikkelsen, 2016)
Even with correct advice, a linear number of bits are necessary to be
better than Hk -competitive
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Succinct predictions

Predictions: 1 bit per request

Discard predictions — same as for advice complexity

bi =

 0 if Opt would have ri in cache next time it is requested
1 otherwise

Phase predictions — based on max. sequences with ≤ k distinct pages

bi =

 0 if ri is in the next phase
1 otherwise

Both cases: 0-predictions = should stay in cache.
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Discard predictions — deterministic

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

All predictions correct =⇒ OBVIOUS keeps same pages as Opt

Observation: OBVIOUS is 1-consistent
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Discard predictions — deterministic algorithms

Obvious deterministic algorithm (OBVIOUS)
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt should not have it in cache next time.)
▶ Otherwise, evict any page.

Suppose for ri , the prediction for p is 1, but the correct prediction is 0
Opt would keep it in cache.
When p is requested again, there is one fault.

Suppose for ri , the prediction is 0, but the correct prediction is 1
Problem: Cache may have no 1-predictions.
Could evict sequence in the opposite of the correct order (like LRU), so
Opt faults once and OBVIOUS faults k times.

Observation: False 0-predictions are much worse than false 1-predictions.
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Notation

η0: Number of incorrect 0-predictions.
η1: Number of incorrect 1-predictions.

A is (α, β, γ)-competitive if for any input seq. I, ∃b

ALG(I) ≤ α · Opt(I) + β · η0 + γ · η1 + b.

↖
constant
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Discard predictions — deterministic

Modify OBVIOUS — Flush-When-All-0s
▶ On a fault, evict a page with a 1-prediction, if there is one.

(Opt will not have it in cache next time.)
▶ Otherwise, flush the cache.

Theorem
Flush-When-All-0s is (1, k − 1, 1)-competitive.

Corollary

Flush-When-All-0s is 1-consistent
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Discard predictions — Flush-When-All-0s

Theorem
Flush-When-All-0s is (1, k − 1, 1)-competitive.

Between 2 flushes:
▶ Opt evicts ≥one 0-predicted page
▶ Flush-When-All-0s evicts k 0-predicted pages

So:
▶ On 0-pages: Flush-When-All-0s0 ≤ Opt0 +(k − 1)η0

▶ On 1-pages: Flush-When-All-0s1 ≤ Opt1 +η1

Flush-When-All-0s ≤ Opt +(k − 1)η0 + η1
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Discard predictions — Flush-When-All-0s

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Between 2 flushes:
▶ Opt evicts ≥one 0-predicted page
▶ Flush-When-All-0s evicts k 0-predicted pages

So:
▶ On 0-pages: Flush-When-All-0s0 ≤ α Opt0 +(k − α)η0

▶ On 1-pages: Flush-When-All-0s1 ≤ Opt1 +η1

Flush-When-All-0s ≤ α Opt +(k − α)η0 + η1

Bertrand Simon Learning-Augmented Online Algorithms & Paging 20 / 25



Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all zeros: η0 ≤ Opt

n = Alg ≤ α ·
(n

k

)
+ β ·

(n
k

)
So: α + β ≥ k.
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Discard predictions — Deterministic lower bound

Theorem
For α ≥ 1, Flush-When-All-0s is (α, k − α, 1)-competitive.

Theorem
For discard-predictions, for a deterministic (α, β, γ)-competitive
algorithm Alg, α + β ≥ k and α + (k − 1)γ ≥ k.

Proof Use k + 1 pages and the cruel adversary against Alg.
(adversary always gives the page not in Alg’s cache)

Alg = n Opt ≤ n
k

Write Alg ≤ α Opt +βη0 + γη1.

Case predictions all ones: η1 ≤ n − Opt

n = Alg ≤ α ·
(n

k

)
+ γ

(
n − n

k

)
So: α + (k − 1)γ ≥ k.
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Discard predictions — Randomized

Algorithm Randomized Eagerly Evict:
Uses ideas from marking algorithms.

▶ runs in phases, marking requested pages
▶ evicts all pages with prediction 1 immediately
▶ among pages with prediction 0, randomly evicts unmarked pages

Theorem
Algorithm Randomized Eagerly Evict is (1, 2Hi , 1)-competitive.

Corollary

Algorithm Randomized Eagerly Evict is 1-consistent

≈ corresponding lower bounds =⇒ results are quite tight
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Phase predictions — Randomized

Algorithm MARK & PREDICT:
Follows MARKER closely.
Major difference: It prefers to evict pages with prediction 1.

Algorithm MARK & PREDICT

For i = 1 to n
If ri is not in cache

If all pages in cache are marked { end phase }
unmark all pages

If there is an unmarked 1-page
evict a random unmarked 1-page

Else

evict a random unmarked

0-

page
bring ri into cache

mark ri
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If all pages in cache are marked { end phase }
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Phase predictions — Randomized

Theorem
Algorithm MARK & PREDICT is (2, Hk , 1)-competitive. (Also holds if
1-pages are evicted deterministically.)

Theorem
Algorithm MARK & PREDICT is
(2, Hk , 2 Opt

η1
(ln(2 η1

Opt + 1) + 1))-competitive.

Corollary

Algorithm MARK & PREDICT is 2-consistent

≈ corresponding lower bounds =⇒ results are quite tight
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Conclusions

Learning-augmented algorithms

Paging with succinct predictions
▶ succinct predictions may be easier to obtain
▶ succinct predictions =⇒ similar guarantees

Future of Learning-Augmented algorithms
▶ “pick a new online problem and add predictions” done 100s of time
▶ new paradigms: multiple predictors, prediction scarcity, stochastic

predictions, practical benchmark, new objective functions. . .
▶ ad: topic of the newly funded ANR project PREDICTIONS
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